Proyección ventana-viewport Window to Viewport Projection

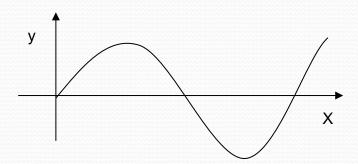
Problema

Suponer una secuencia de puntos en 2D:

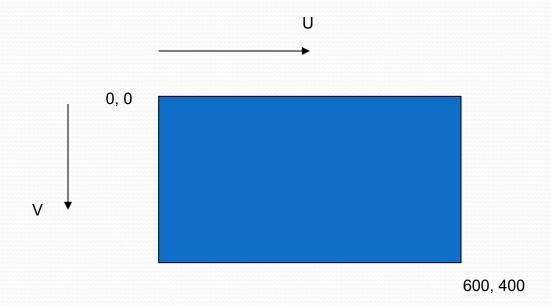
X	у	
-2.75	4.11	
7.6	0.9	
5.75	-7.22	
14.2	-5.0	

 Se desea graficar esos puntos en un panel de 600 x 400 pixeles.

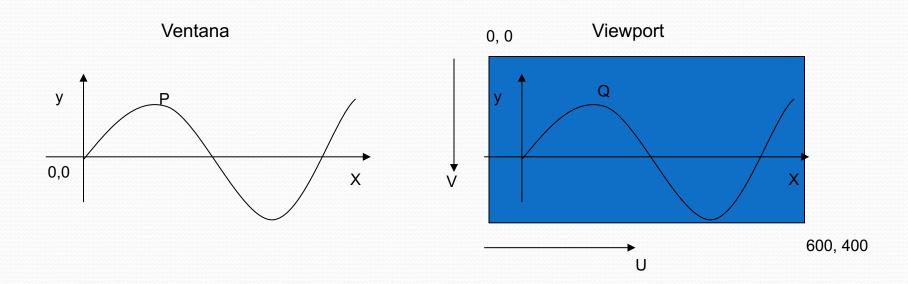
Problema


- Las coordenadas del panel son números enteros no negativos.
- El rango de las coordenadas del panel están entre (0, 0) y (599, 399).
- El origen está en la parte superior izquierda.
- Las coordenadas de los puntos son números reales arbitrarios.
- El origen puede estar en cualquier lugar.

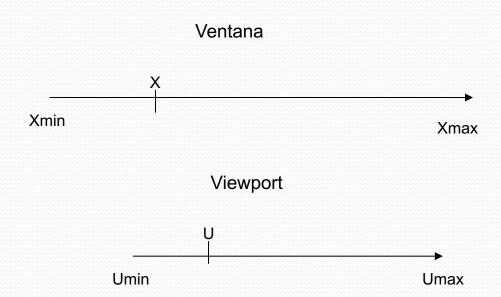
Problema


- La solución es hacer una proyección (mapeo) del sistema de coordenadas de los datos al sistema de coordenadas del panel.
- Esta proyección se le conoce como proyección ventana – viewport.

- Viewport: región de la pantalla donde se dibuja.
 Ejemplo: panel.
- Ventana: región del mundo que se desea dibujar en un viewport.
- La ventana y el viewport tienen su propio sistemas de coordenadas.


- Ejemplo de ventana:
- $x: [0, 2\pi]$
- *y*: [−1, 1]

• Ejemplo de viewport:


 Proyección ventana-viewport: dado un punto P en la ventana, encontrar la proyección, Q, de P en el viewport.

Proyección ventana-viewport

 Se consideran por separado los ejes horizontal y vertical.

• Dados x_{min} , x_{max} , x, u_{min} y u_{max} encontrar u.

Suposición: se respeta la proporción.

$$\frac{x - x_{min}}{x_{max} - x_{min}} = \frac{u - u_{min}}{u_{max} - u_{min}}$$

• Se despeja *u*:

•
$$u = \frac{u_{max} - u_{min}}{x_{max} - x_{min}} \cdot (x - x_{min}) + u_{min}$$

- ¡Cuidado con la división entera!
- Definir las variables como reales y redondear \boldsymbol{u} a entero.

- ¿Cómo se sabe que la ecuación es correcta?
- Comprobar que u_{min} es la proyección de x_{min} .
- Comprobar que u_{max} es la proyección de x_{max} .

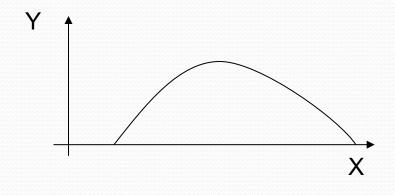
Eje vertical

• Para el eje vertical:

Las proporciones son al revés.

Eje vertical

$$\frac{y - y_{min}}{y_{max} - y_{min}} = \frac{v_{max} - v_{min}}{v_{max} - v_{min}}$$

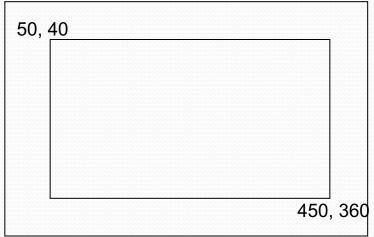

• Se despeja *v*:

•
$$v = v_{max} - \frac{v_{max} - v_{min}}{y_{max} - y_{min}} \cdot (y - y_{min})$$

• ¿La ecuación es correcta?

Tiro parabólico:

	X	у	
,	10	0	
'	12	15	
,	14	28	
'	16	42	
	18	30	
2	20	14	
	22	0	



• ¿Cuál es la ventana?

- Buscar los mínimos y máximos en X y Y.
- Usar un "extra" en los mínimos y máximos (por ejemplo 10%).
- Ventana:
 - X: [5, 25]
 - Y: [0, 47]
- ¿Cuál es el viewport?

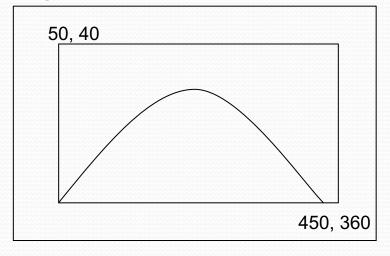
- Suponer un panel de 500 (ancho) x 400 (alto) pixeles.
- No se usa todo el panel (usar un margen).

Ejemplo o, o o o o o

500, 400

- Viewport:
 - •U: [50, 450]
 - •V: [40, 360]

• Aplicar las ecuaciones:


•
$$u = \frac{450-50}{24-10} \cdot (x-10) + 50$$

•
$$v = 360 - \frac{360 - 40}{47 - 0} \cdot (y - 0)$$

• Aplicar las ecuaciones a cada punto en la ventana:

Ventana		Viewport	
X	у	u	V
10	0	50	360
12	15	107	258
14	28	164	169
16	42	221	74
18	30	279	156
20	14	336	265
22	0	393	360

0, 0

500, 400

Resumen

- 1. Definir la ventana: x_{min} , y_{min} , x_{max} , y_{max} .
- 2. Definir el viewport: u_{min} , v_{min} , u_{max} , v_{max} .
- 3. Para cada punto p(x, y) en la ventana:
 - a) Aplicar las ecuaciones para encontrar el punto q(u, v).
 - b) Graficar q en el viewport.