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Abstract 
 

A 4KB page size has been used for Virtual Memory since 
the sixties. In fact, today, the most common page size is still 
4KB. Choosing a page size is finding the middle ground be- 
tween several factors. On the one hand, a smaller page will 
reduce fragmentation; thus saving memory space.  On the 
other hand, a larger page will increase TLB coverage; thus 
eliminating the need to access memory resident page tables. 
During the years that the 4KB page has been employed, 
memory size has increased from Megabytes to Gigabytes. 
We can sacrifice some space for higher performance. 

With the aim of obtaining the optimal page size, we sim- 
ulated applications from the SPEC2000 suite. We measured 
TLB misses and memory usage of all page sizes that are 
powers of two, ranging from 4KB to 256KB. Based on our 
results, we show that the use of 16KB size for the base page 
is the recommended selection. 

Another way of increasing page size and TLB coverage 
is using superpages. Many machines support several page 
sizes, which let the OS use several page sizes. In this paper 
we survey various ways of making the most of superpages. 
We adopt a simple solution of superpaging with two page 
sizes. Based on our results, we suggest a base page of 16KB 
for code or small data segments and a larger page of 256KB 
for large data segments. 

 
Keywords: Allocation/deallocation strategies, Simulation, 
Main memory, Virtual memory. 

 
1. Introduction 

 
Choosing the best page size for Virtual Memory requires 

considering several factors.  A smaller page size reduces 
the amount of internal fragmentation.  On the other hand, 
a larger page needs smaller page tables. The Linux kernel 
represents every physical page with a data structure which 
consumes about 1% of memory assuming 4KB pages. En- 
larging the page size will reduce this table accordingly. The 
time required to transfer a page from or to disk is composed 

of access and transfer times, access time being the dominant 
factor. A larger page minimizes I/O time. 

However, the main reason to prefer a larger page is to 
increase the virtual to physical translation speed. In a vir- 
tual memory system, every address issued by the CPU is 
translated into a physical address by the memory manage- 
ment unit (MMU) hardware. The translations are stored in 
memory resident page tables. To reduce address translation 
time, the most recently used translations are kept in a Trans- 
lation Lookaside Buffer (TLB), a fast access cache. In case 
of a TLB miss, the translation must be searched in the page 
table and loaded into the TLB. Because access to a TLB 
must be fast, a TLB is made with a small number of en- 
tries. TLB coverage is the amount of memory mapped by 
the TLB. Assuming a TLB size of 100 entries and a page 
size of 4KB, TLB coverage is less than half a megabyte of 
memory.  Since the size of a TLB is limited, in order to 
increase TLB coverage we have to use larger pages. 

A 4KB page size has been used for Virtual Memory since 
the sixties.  Even the PDP-11 had 8KB pages which are 
larger than the 4KB pages of contemporary IA-32. In fact, 
today, the most common page size is still 4KB. However, 
during the years the balance between the factors influenc- 
ing page size has changed. Memory size of computers has 
increased from Megabytes to Gigabytes, as a result only a 
small fraction of the memory of contemporary computers 
is covered by TLB. Access times of disks have not kept up 
with throughput increases. In recent years, throughput has 
improved by a factor of 100, but access time has improved 
by only a factor of 3 [9]. Transferring larger pages from and 
to disk became more efficient. 
 
2. Superpaging 
 

Another possibility of increasing TLB coverage is by us- 
ing superpages. Many modern architectures support super- 
pages, which let the OS use several page sizes. Superpaging 
enables choosing an appropriate size for an allocation – a 
small page for a small spatial locality to save memory, and 
a large page for a large locality to increase TLB coverage. 



Pages larger than 1MB are suitable for the allocation of 
non-paged memory, such as for mapping frame buffers or 
for fixed parts of the kernel.  When using superpages for 
paging the code and data of user programs, a medium sized 
page should be preferred. The cost of internal fragmentation 
with very large pages may be too high. Writing to such a 
page is also a problem, since there is only one dirty bit and 
there is a need to update the whole page. 

Superpages can be used by the operating system in three 
different ways: 

 
2.1. Allocation 

 
At page fault time a large page is allocated and all its 

subpages are loaded into the memory. The page is initially 
mapped in the page table as a large page. Commercial OSes 
like Solaris MPSS [3] use this method for superpaging. 

Implementations of multiple pagesizes on IRIX [1] and 
HP-UX [6], also allocate large pages at fault-service time. 
In IRIX the desired page size is specified by the user prior 
to running the application or via a system call compiled into 
the code. In HP-UX the size of the page is specified either 
by the user or determined transparently by the operating 
system according to the size of the memory region required. 

Allocating and populating a large page at page fault time 
has the advantage that any reference to this page from the 
moment of allocation does not incur a TLB miss and uses a 
single TLB entry. Transferring a whole large page from sec- 
ondary storage is more efficient than transferring the small 
pages separately. 

 
2.2. Reservation 

 
In a reservation-based allocation, upon first referencing 

an address in a superpage, the superpage is allocated but not 
populated. At first, only the base pages causing page faults 
are loaded from secondary storage to memory.  When the 
number of populated frames reaches a threshold, the miss- 
ing pages are brought from disk and the small pages are 
promoted into a superpage. 

Talluri et al.  [8] propose a reservation scheme for use 
with a TLB that can map two fixed page sizes; the suggested 
sizes are 4KB and 64KB. Navarro [4] proposes a reservation 
scheme with multiple page sizes in which promotion can be 
performed incrementally. 

The advantage of reservation as compared to full allo- 
cation is that it postpones loading of base pages until it is 
more certain that the subpages will be used as a superpage. 
It also makes the start-up time of a process shorter. 

 
2.3. Relocation 

 
In a relocation based scheme, base pages are faulted in 

regularly and memory usage is monitored to decide when it 

is worthwhile to create a superpage. In that case a contigu- 
ous area of memory is found and the base pages are copied. 
If not all pages are resident the missing pages are brought 
from secondary storage. 

In another paper, Talluri et al.  [7] propose a relocation 
scheme in which there are two page sizes 4KB and 32KB. 
The threshold they use for relocation is whether at least half 
or more of the base pages have been accessed.  Romer et 
al.  [5] propose a scheme for tracking potential superpage 
usage and deciding dynamically when to promote the base 
pages.  According to this approach superpages are created 
only when necessary thus minimizing internal fragmenta- 
tion. 
 
3. Choosing a page size 
 

To find the desired size for paging in virtual memory, we 
ran applications from the SPEC2000 suite. We counted the 
TLB misses and noted the memory usage of various page 
sizes. A right choice for a page size is when there is a signif- 
icant decrease in TLB misses without a significant increase 
in memory usage. 

When using superpaging, operating systems such as HP, 
IRIX and Solaris use the allocation method. They allocate a 
large page at page fault time. This is due to the simplicity of 
allocating and mapping the whole superpage when first ref- 
erencing it and because the benefit of other more complex 
methods is not clear. We would like to adopt this scheme. 

Many machines which offer superpages have a variety of 
page sizes. However, there is no clear policy for the OS to 
select the right size. So we would like to adopt a simplified 
superpaging system in which just one of two page sizes is 
chosen, either a base page or a large page. According to this 
scheme, the policy of the operating system is to allocate a 
fixed large page if the memory object is large enough and 
if there is enough memory. While running the SPEC2000 
suite we noticed that dTLB misses drop only with larger 
pages. This may help us figure out the large page size suit- 
able for large data segments. 
 
4. Experimental Setup 
 

To measure the TLB misses and memory usage of var- 
ious page sizes,  we simulated 12 applications from the 
SPEC2000 suite. Simulation of these benchmarks to com- 
pletion takes a long time, so we traced each application 
for 48 hours. The computer used was a 3.66GHz Intel(R) 
Xeon(TM) CPU; it was dedicated to this simulation.  We 
used valgrind - a suite of simulation-based debugging 
and profiling tools for Linux. One of its tools Lackey was 
adapted to output a trace of memory references. The out- 
put consisted a trace of page references for all power of 2 
multiples from 4KB up to 256KB. 



The trace creates immense amounts of output.   If the 
output is saved to a file, it will grow quickly to gigabytes. 
To overcome this limitation, we used on-the-fly simulation. 
The traced output of valgrind was input via a pipe to a 
program which analyzed the data and produced the results. 

The analyzing program simulated an LRU based TLB 
and counted the TLB misses for each of the page sizes. The 
simulated TLB was a fully associative TLB having 64 en- 
tries for instructions and 64 entries for data.  We assumed 
the TLB is dedicated to one application, and did not con- 
sider operating system or other applications that may oc- 
cupy slots in the TLB. As was mentioned earlier, the op- 
erating system can use big pages and thus occupy a small 
space in the TLB. In that case there is minor influence of a 
running operating system on TLB performance. 

In the analyzing program, we also counted the pages al- 
located to each application.  We calculated for each page 
size the overall amount of memory the program occupied 
during its execution. We assumed a large amount of mem- 
ory with no need to do swapping. 

 
5. Results 

 
Fig. 1 illustrates the TLB misses and memory usage of 

four applications with increasing page sizes.  The instruc- 
tions behavior is shown on the left four graphs and that 
of data on the right four graphs.  In each graph each page 
size has two columns; the left column presents the absolute 
number of TLB misses that occured while running the ap- 
plication and the right column the total amount of memory 
used. 

In the the graphs of crafty and parser, the iTLB 
misses drop very low when using 16KB pages. In fact, these 
two applications represent 10 out of the 12 applications that 
we ran. The relative iTLB miss percentage is close to 0% 
for most applications when using 16KB pages. As to mem- 
ory usage, We can also see that the relative increase in mem- 
ory usage for crafty and parser is less than 25%. The 
extra memory that is consumed seems to be worth the per- 
formance boost. Even for the applications apsi and vpr 
iTlb decreases to about 1/3 and memory increases by about 
2/3 at 16KB, which may be acceptable considering today’s 
computers which have plenty of memory. 

It can be concluded that a 16KB base page is the right 
size for the allocation of code; it almost eliminates iTLB 
misses for most applications without incurring a high mem- 
ory cost.  Allocating larger pages is not worthwhile since 
for most applications it hardly improves iTLB misses and 
for some applications it considerably increases memory us- 
age. 

Looking at the data of crafty and parser we see 
that dTLB misses drop very low only when using 256KB 
pages. This is the behavior of most applications, however 

the dTLB misses of vpr (and gcc) get very low at 32KB 
pages and that of apsi not even at 256KB. As to mem- 
ory usage for data, it is almost constant for increasing page 
sizes. 

It can be concluded, that for large data objects it is worth 
allocating 256KB pages.  However, for small data objects 
16KB pages should be allocated, the same size as the base 
page used for code. 
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(a) apsi instructions  (b) apsi data 

(c) crafty instructions (d) crafty data 

(e) parser instructions (f) parser data 

 

(g) vpr instructions (h) vpr data 
 
 

Figure 1. TLB misses (blue bars) and Memory usage (red bars) for page sizes 4KB – 256KB. On the 
left side is the behavior of instructions and on the right side the behavior of data. 


