
Using 4KB Page Size for Virtual Memory is Obsolete

P. Weisberg and Y. Wiseman
Department of Computer Science

Bar Ilan University
{weisberg,wiseman}@cs.biu.ac.il

Abstract

A 4KB page size has been used for Virtual Memory since
the sixties. In fact, today, the most common page size is still
4KB. Choosing a page size is finding the middle ground be-
tween several factors. On the one hand, a smaller page will
reduce fragmentation; thus saving memory space. On the
other hand, a larger page will increase TLB coverage; thus
eliminating the need to access memory resident page tables.
During the years that the 4KB page has been employed,
memory size has increased from Megabytes to Gigabytes.
We can sacrifice some space for higher performance.

With the aim of obtaining the optimal page size, we sim-
ulated applications from the SPEC2000 suite. We measured
TLB misses and memory usage of all page sizes that are
powers of two, ranging from 4KB to 256KB. Based on our
results, we show that the use of 16KB size for the base page
is the recommended selection.

Another way of increasing page size and TLB coverage
is using superpages. Many machines support several page
sizes, which let the OS use several page sizes. In this paper
we survey various ways of making the most of superpages.
We adopt a simple solution of superpaging with two page
sizes. Based on our results, we suggest a base page of 16KB
for code or small data segments and a larger page of 256KB
for large data segments.

Keywords: Allocation/deallocation strategies, Simulation,
Main memory, Virtual memory.

1. Introduction

Choosing the best page size for Virtual Memory requires

considering several factors. A smaller page size reduces
the amount of internal fragmentation. On the other hand,
a larger page needs smaller page tables. The Linux kernel
represents every physical page with a data structure which
consumes about 1% of memory assuming 4KB pages. En-
larging the page size will reduce this table accordingly. The
time required to transfer a page from or to disk is composed

of access and transfer times, access time being the dominant
factor. A larger page minimizes I/O time.

However, the main reason to prefer a larger page is to
increase the virtual to physical translation speed. In a vir-
tual memory system, every address issued by the CPU is
translated into a physical address by the memory manage-
ment unit (MMU) hardware. The translations are stored in
memory resident page tables. To reduce address translation
time, the most recently used translations are kept in a Trans-
lation Lookaside Buffer (TLB), a fast access cache. In case
of a TLB miss, the translation must be searched in the page
table and loaded into the TLB. Because access to a TLB
must be fast, a TLB is made with a small number of en-
tries. TLB coverage is the amount of memory mapped by
the TLB. Assuming a TLB size of 100 entries and a page
size of 4KB, TLB coverage is less than half a megabyte of
memory. Since the size of a TLB is limited, in order to
increase TLB coverage we have to use larger pages.

A 4KB page size has been used for Virtual Memory since
the sixties. Even the PDP-11 had 8KB pages which are
larger than the 4KB pages of contemporary IA-32. In fact,
today, the most common page size is still 4KB. However,
during the years the balance between the factors influenc-
ing page size has changed. Memory size of computers has
increased from Megabytes to Gigabytes, as a result only a
small fraction of the memory of contemporary computers
is covered by TLB. Access times of disks have not kept up
with throughput increases. In recent years, throughput has
improved by a factor of 100, but access time has improved
by only a factor of 3 [9]. Transferring larger pages from and
to disk became more efficient.

2. Superpaging

Another possibility of increasing TLB coverage is by us-
ing superpages. Many modern architectures support super-
pages, which let the OS use several page sizes. Superpaging
enables choosing an appropriate size for an allocation – a
small page for a small spatial locality to save memory, and
a large page for a large locality to increase TLB coverage.

Pages larger than 1MB are suitable for the allocation of
non-paged memory, such as for mapping frame buffers or
for fixed parts of the kernel. When using superpages for
paging the code and data of user programs, a medium sized
page should be preferred. The cost of internal fragmentation
with very large pages may be too high. Writing to such a
page is also a problem, since there is only one dirty bit and
there is a need to update the whole page.

Superpages can be used by the operating system in three
different ways:

2.1. Allocation

At page fault time a large page is allocated and all its

subpages are loaded into the memory. The page is initially
mapped in the page table as a large page. Commercial OSes
like Solaris MPSS [3] use this method for superpaging.

Implementations of multiple pagesizes on IRIX [1] and
HP-UX [6], also allocate large pages at fault-service time.
In IRIX the desired page size is specified by the user prior
to running the application or via a system call compiled into
the code. In HP-UX the size of the page is specified either
by the user or determined transparently by the operating
system according to the size of the memory region required.

Allocating and populating a large page at page fault time
has the advantage that any reference to this page from the
moment of allocation does not incur a TLB miss and uses a
single TLB entry. Transferring a whole large page from sec-
ondary storage is more efficient than transferring the small
pages separately.

2.2. Reservation

In a reservation-based allocation, upon first referencing

an address in a superpage, the superpage is allocated but not
populated. At first, only the base pages causing page faults
are loaded from secondary storage to memory. When the
number of populated frames reaches a threshold, the miss-
ing pages are brought from disk and the small pages are
promoted into a superpage.

Talluri et al. [8] propose a reservation scheme for use
with a TLB that can map two fixed page sizes; the suggested
sizes are 4KB and 64KB. Navarro [4] proposes a reservation
scheme with multiple page sizes in which promotion can be
performed incrementally.

The advantage of reservation as compared to full allo-
cation is that it postpones loading of base pages until it is
more certain that the subpages will be used as a superpage.
It also makes the start-up time of a process shorter.

2.3. Relocation

In a relocation based scheme, base pages are faulted in

regularly and memory usage is monitored to decide when it

is worthwhile to create a superpage. In that case a contigu-
ous area of memory is found and the base pages are copied.
If not all pages are resident the missing pages are brought
from secondary storage.

In another paper, Talluri et al. [7] propose a relocation
scheme in which there are two page sizes 4KB and 32KB.
The threshold they use for relocation is whether at least half
or more of the base pages have been accessed. Romer et
al. [5] propose a scheme for tracking potential superpage
usage and deciding dynamically when to promote the base
pages. According to this approach superpages are created
only when necessary thus minimizing internal fragmenta-
tion.

3. Choosing a page size

To find the desired size for paging in virtual memory, we
ran applications from the SPEC2000 suite. We counted the
TLB misses and noted the memory usage of various page
sizes. A right choice for a page size is when there is a signif-
icant decrease in TLB misses without a significant increase
in memory usage.

When using superpaging, operating systems such as HP,
IRIX and Solaris use the allocation method. They allocate a
large page at page fault time. This is due to the simplicity of
allocating and mapping the whole superpage when first ref-
erencing it and because the benefit of other more complex
methods is not clear. We would like to adopt this scheme.

Many machines which offer superpages have a variety of
page sizes. However, there is no clear policy for the OS to
select the right size. So we would like to adopt a simplified
superpaging system in which just one of two page sizes is
chosen, either a base page or a large page. According to this
scheme, the policy of the operating system is to allocate a
fixed large page if the memory object is large enough and
if there is enough memory. While running the SPEC2000
suite we noticed that dTLB misses drop only with larger
pages. This may help us figure out the large page size suit-
able for large data segments.

4. Experimental Setup

To measure the TLB misses and memory usage of var-
ious page sizes, we simulated 12 applications from the
SPEC2000 suite. Simulation of these benchmarks to com-
pletion takes a long time, so we traced each application
for 48 hours. The computer used was a 3.66GHz Intel(R)
Xeon(TM) CPU; it was dedicated to this simulation. We
used valgrind - a suite of simulation-based debugging
and profiling tools for Linux. One of its tools Lackey was
adapted to output a trace of memory references. The out-
put consisted a trace of page references for all power of 2
multiples from 4KB up to 256KB.

The trace creates immense amounts of output. If the
output is saved to a file, it will grow quickly to gigabytes.
To overcome this limitation, we used on-the-fly simulation.
The traced output of valgrind was input via a pipe to a
program which analyzed the data and produced the results.

The analyzing program simulated an LRU based TLB
and counted the TLB misses for each of the page sizes. The
simulated TLB was a fully associative TLB having 64 en-
tries for instructions and 64 entries for data. We assumed
the TLB is dedicated to one application, and did not con-
sider operating system or other applications that may oc-
cupy slots in the TLB. As was mentioned earlier, the op-
erating system can use big pages and thus occupy a small
space in the TLB. In that case there is minor influence of a
running operating system on TLB performance.

In the analyzing program, we also counted the pages al-
located to each application. We calculated for each page
size the overall amount of memory the program occupied
during its execution. We assumed a large amount of mem-
ory with no need to do swapping.

5. Results

Fig. 1 illustrates the TLB misses and memory usage of

four applications with increasing page sizes. The instruc-
tions behavior is shown on the left four graphs and that
of data on the right four graphs. In each graph each page
size has two columns; the left column presents the absolute
number of TLB misses that occured while running the ap-
plication and the right column the total amount of memory
used.

In the the graphs of crafty and parser, the iTLB
misses drop very low when using 16KB pages. In fact, these
two applications represent 10 out of the 12 applications that
we ran. The relative iTLB miss percentage is close to 0%
for most applications when using 16KB pages. As to mem-
ory usage, We can also see that the relative increase in mem-
ory usage for crafty and parser is less than 25%. The
extra memory that is consumed seems to be worth the per-
formance boost. Even for the applications apsi and vpr
iTlb decreases to about 1/3 and memory increases by about
2/3 at 16KB, which may be acceptable considering today’s
computers which have plenty of memory.

It can be concluded that a 16KB base page is the right
size for the allocation of code; it almost eliminates iTLB
misses for most applications without incurring a high mem-
ory cost. Allocating larger pages is not worthwhile since
for most applications it hardly improves iTLB misses and
for some applications it considerably increases memory us-
age.

Looking at the data of crafty and parser we see
that dTLB misses drop very low only when using 256KB
pages. This is the behavior of most applications, however

the dTLB misses of vpr (and gcc) get very low at 32KB
pages and that of apsi not even at 256KB. As to mem-
ory usage for data, it is almost constant for increasing page
sizes.

It can be concluded, that for large data objects it is worth
allocating 256KB pages. However, for small data objects
16KB pages should be allocated, the same size as the base
page used for code.

References

[1] N. Ganapathy and C. Schimmel. General Purpose Op-

erating System Support for Multiple Page Sizes. In
Proceedings of the USENIX 1998 Annual Technical
Conference. USENIX Assoc., June 1998.

[2] Gokul B. Kandiraju, and Anand Sivasubramaniam.

Characterizing the dTLB Behavior of SPEC CPU2000
Benchmarks. ACM SIGMETRICS Perform. Eval.
Rev., Vol. 30, No. 1, pages 129–139, 2002.

[3] Richard McDougall. Supporting Multiple Page Sizes

in the Solaris Operating System. Sun BluePrints On-
Line, March 2004.

[4] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan

Cox. Practical, transparent operating system support
for superpages. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), December 2002.

[5] Ted Romer, Wayne Ohlrich, Anna Karlin, and Brian

Bershad. Reducing TLB and memory overhead using
online superpage promotion. In Proc. of the 22nd An-
nual Int. Symp. on Computer Architecture, pages 176–
187, June 1995.

[6] Subramanian, C. Mather, K. Peterson, and B. Raghu-

nath. Implementation of Multiple Pagesize Support in
HP-UX. In Proceedings of the USENIX 1998 Annual
Technical Conference, June 1998.

[7] M.Talluri, Kong, S., Hill, M., and Patterson, D. Trade-

offs in Supporting Two Page Sizes. In Proceedings of
the 19th Annual International Symposium on Com-
puter Architecture, pages 415–424, May 1992.

[8] Madhusudhan Talluri and Mark D. Hill. Surpassing

the TLB performance of superpages with less operat-
ing system support. In Proc. 6th ASPLOS, pages 171–
182, October 1994.

[9] Tom’s Hardware. 15 Years Of Hard Drive History:

Capacities Outran Performance.
http://www.tomshardware.com/reviews/15-years-of-
hard-drive-history,1368.html.

[10] Rafael B. Yehezkael, Yair Wiseman, Haim G. and

Mendelbaum and I. L. Gordin, Experiments in
Separating Computational Algorithm from Program
Distribution and Communication, LNCS of Springer
Verlag Vol. 1947, pp. 268-278, 2001.

[11] Yair Wiseman, A Pipeline Chip for Quasi

Arithmetic Coding, IEICE Journal - Trans.
Fundamentals, Tokyo, Japan, Vol. E84-A No.4, pp.

1034-1041, 2001.

[12] Yair Wiseman and Erick Fredj, Contour Extraction

of Compressed JPEG Images, ACM - Journal of
Graphic Tools, Vol. 6(3), pp. 37-43, 2001

[13] Shmuel T. Klein and Yair Wiseman, Parallel

Huffman Decoding with Applications to JPEG
Files, The Computer Journal, Oxford University
Press, Swindon, UK, Vol. 46(5), pp. 487-497, 2003.

[14] Yair Wiseman and Dror G. Feitelson, Paired Gang

Scheduling, IEEE Transactions on Parallel and
Distributed Systems, Vol. 14(6), pp. 581-592, 2003.

[15] Mordechay Geva and Yair Wiseman, A Common

Framework for Inter-Process Communication in a
Cluster, Operating Systems Review, Vol. 38(4), pp.
33-44, 2004.

[16] Yair Wiseman, Karsten Schwan and Patrick

Widener, Efficient End to End Data Exchange
Using Configurable Compression, Proc. The 24th
IEEE Conference on Distributed Computing
Systems (ICDCS 2004), Tokyo, Japan, pp. 228-235,
2004.

[17] Maayan Geffet, Yair Wiseman and Dror G.

Feitelson, Automatic Alphabeth Recognition,
Kluwer Journal of Information Retrieval, Vol. 8(1),
pp. 25-40, 2005.

[18] Shmuel T. Klein and Yair Wiseman, Parallel

Lempel Ziv Coding, Journal of Discrete Applied
Mathematics, Vol. 146(2), pp. 180-191, 2005.

[19] Yair Wiseman, ARC Based SuperPaging,

Operating Systems Review, Vol. 39(2), pp. 74-78,
2005.

[20] Yair Wiseman, Advanced Non-Distributed

Operating Systems Course, ACM - Computer
Science Education, Vol. 37(2), pp. 65-69, 2005.

[21] Moses Reuven and Yair Wiseman, Reducing the

Thrashing Effect Using Bin Packing, Proc. IASTED
Modeling, Simulation, and Optimization
Conference, MSO-2005, Oranjestad, Aruba, pp. 5-
10, 2005.

[22] Moses Reuven and Yair Wiseman, Medium-Term

Scheduler as a Solution for the Thrashing Effect,
The Computer Journal, Oxford University Press,
Swindon, UK, Vol. 49(3), pp. 297-309, 2006.

[23] Yair Wiseman, The Relative Efficiency of LZW

and LZSS, Data Science Journal, Vol. 6, pp. 1-6,
2007.

[24] Yair Wiseman and Irit Gefner, Conjugation Based

Compression for Hebrew Texts ACM Transactions
on Asian Language Information Processing, Vol
.6(1), article no. 4, 2007.

[25] Mordechay Geva and Yair Wiseman, Distributed

Shared Memory Integration, Proc. IEEE Conference
on Information Reuse and Integration (IEEE IRI-
2007), Las Vegas, Nevada, pp. 146-151, 2007.

[26] Yair Wiseman, Burrows-Wheeler Based JPEG,

Data Science Journal, Vol. 6, pp. 19-27, 2007.

[27] Ilan Grinberg and Yair Wiseman, Scalable Parallel

Collision Detection Simulation, Proc. Signal and
Image Processing (SIP-2007), Honolulu, Hawaii,
pp. 380-385, 2007.

[28] Yair Wiseman, ASOSI: Asymmetric Operating

System Infrastructure, Proc. 21st Conference on
Parallel and Distributed Computing and
Communication Systems, (PDCCS 2008), New
Orleans, Louisiana, pp. 193-198, 2008.

[29] Yair Wiseman, Joel Isaacson and Eliad Lubovsky,

Eliminating the Threat of Kernel Overflows, Proc.
IEEE Conference on Information Reuse and
Integration (IEEE IRI-2008), Las Vegas, Nevada,
pp. 116-121, 2008.

[30] Moshe Itshak and Yair Wiseman, AMSQM:

Adaptive Multiple SuperPage Queue Management,
Proc. IEEE Conference on Information Reuse and
Integration (IEEE IRI-2008), Las Vegas, Nevada,
pp. 52-57, 2008.

(a) apsi instructions (b) apsi data

(c) crafty instructions (d) crafty data

(e) parser instructions (f) parser data

(g) vpr instructions (h) vpr data

Figure 1. TLB misses (blue bars) and Memory usage (red bars) for page sizes 4KB – 256KB. On the
left side is the behavior of instructions and on the right side the behavior of data.

