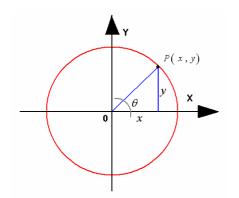
1.3. BREVE REPASO DE TRIGONOMETRÍA.

Las funciones trigonométricas nos permiten el estudio de muchos fenómenos de la naturaleza que son periódicos.



Cuando un ángulo φ se sitúa en posición normal en el centro de un círculo de radio ${\it r}$, las funciones Trigonométricas del ángulo φ están definidas como sigue:

$$sen(\varphi) = \frac{y}{r}$$
 $Cos(\varphi) = \frac{x}{r}$ $Tan(\varphi) = \frac{y}{x}$
 $Csc(\varphi) = \frac{r}{y}$ $Sec(\varphi) = \frac{r}{x}$ $Cot(\varphi) = \frac{x}{y}$

Como complemento puede decirse que para las funciones trigonométricas se tienen las siguientes relaciones:

$$Tan(\varphi) = \frac{Sen(\varphi)}{Cos(\varphi)}$$
 $Csc(\varphi) = \frac{1}{Sen(\varphi)}$ $Sec(\varphi) = \frac{1}{Cos(\varphi)}$ $Cot(\varphi) = \frac{1}{Tan(\varphi)}$

A partir de las definiciones anteriores y teniendo en cuenta el círculo unitario centrado en el origen se pueden establecer los siguientes valores de referencia:

Función	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$Cos(\theta)$	$\sqrt{\frac{4}{2}} = 1$	$\sqrt{\frac{3}{2}}$	$\sqrt{\frac{2}{2}}$	$\sqrt{1/2} = 1/2$	$\sqrt{\frac{0}{2}} = 0$
$Sen(\theta)$	$\sqrt{\frac{0}{2}} = 0$	$\sqrt{\frac{1}{2}} = \frac{1}{2}$	$\sqrt{\frac{2}{2}}$	$\sqrt{\frac{3}{2}}$	$\sqrt{\frac{4}{2}} = 1$
$Tan(\theta)$	0	1/\sqrt{3}	1	$\sqrt{3}$	Indeterminado

Aplicando el teorema de Pitágoras al círculo unitario definido en la figura anterior:

$$x^2 + y^2 = 1$$
 que es lo mismo que escribir su equivalente $Sen^2(\varphi) + Cos^2(\varphi) = 1$

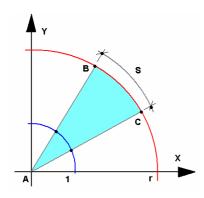
También es posible expresar las coordenadas del punto p(x, y) en términos del radio del círculo y del ángulo al centro, así:

$$x = r Cos(\varphi)$$
 $y = r Sen(\varphi)$

Cuando se trata de una ecuación de radio unitario, la ecuación anterior se transforma en:

$$x = Cos(\varphi)$$
 $y = Sen(\varphi)$

MEDIDAS EN RADIANES



La medida en radianes de cualquier ángulo $\widehat{\mathit{BAC}}$ al centro del circulo está determinado por la longitud del arco que subtiende.

Tratándose de dos círculos concéntricos, uno de radio unitario y el otro de cualquier valor, los arcos que subtiende un ángulo al centro serán semejantes.

 $\frac{\text{Longitud del arco exterior}}{\text{Radio del Círculo exterior}} = \frac{\text{Longitud del arco interior}}{1}$

Que es lo mismo que escribir:

$$\frac{s}{r} = \frac{\varphi}{1} = \varphi$$

Para cualquier círculo con centro en B(x, y), la razón s/r de la longitud del arco interceptado al radio del círculo da siempre la medida del ángulo en radianes.

$$s = \varphi r$$

Lo que significa que para un círculo de radio unitario, la longitud del arco interceptado será igual al ángulo al centro del círculo.

PERIODICIDAD

Debido que las coordenadas del punto P(x,y), están definidas en función del ángulo φ , se puede afirmar que el punto $s+2\pi$ corresponde al punto s, lo que permite definir las siguientes identidades:

$$Cos(\phi + 2\pi) = Cos\phi \rightarrow Cos\left(\frac{\pi}{4} + 2 \quad \pi\right) = Cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$Sen(\phi + 2\pi) = Sen\phi \rightarrow Sen\left(\frac{\pi}{4} + 2\pi\right) = Sen\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

De donde es se asegurar que el número 2π puede ser adicionado o restado a cualquier ángulo que sea parte del dominio de las funciones **Seno** y **Coseno**; lo anterior puede aplicarse n veces sobre el ángulo.

$$Cos(\phi + 2n\pi) = Cos(\phi) \rightarrow Cos\left(\frac{\pi}{4} + 5(2\pi)\right) = Cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
$$Sen(\phi + 2n\pi) = Sen(\phi) \rightarrow Sen\left(\frac{\pi}{4} + 7(2\pi)\right) = Sen\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

FORMULAS DE SUMAS Y DIFERENCIAS

Dos ángulos de igual magnitud pero de signo opuesto únicamente difieren en el sentido de su proyección vertical, por lo que se puede decir:

$$Sen(-\phi) = -\frac{y}{r} = -Sen(\phi)$$
$$Cos(-\phi) = \frac{x}{r} = Cos(\phi)$$

A manera de repaso es bueno recordar las siguientes identidades:

$$(1) \quad Sen(A+B) = Sen(A)Cos(B) + Cos(A)Sen(B)$$

(2)
$$Cos(A+B) = Cos(A)Cos(B) - Sen(A)Sen(B)$$

Si en estas ecuaciones se reemplaza **B** por **-B** y teniendo en cuenta que:

$$Sen(-B) = -Sen(B)$$
 $Cos(-B) = Cos(B)$

$$Sen(A-B) = Sen(A) Cos(B) - Cos(A) Sen(B)$$

$$Cos(A-B) = Cos(A)Cos(B) + Sen(A)Sen(B)$$

La formula correspondiente a la Tangente de la diferencia se puede definir como una consecuencia de las dos ecuaciones anteriores:

$$Tan(A-B) = \frac{Sen(A-B)}{Cos(A-B)} = \frac{Sen(A)Cos(B) - Cos(A)Sen(B)}{Cos(A)Cos(B) + Sen(A)Sen(B)}$$

Dividiendo numerador y denominador por Cos(A) Cos(B)

$$Tan(A-B) = \frac{Tan(A) - Tan(B)}{1 + Tan(A) Tan(B)}$$

Análogamente para la tangente de la suma de dos ángulos se tiene:

$$Tan(A+B) = \frac{Sen(A+B)}{Cos(A+B)} = \frac{Sen(A)Cos(B) + Cos(A)Sen(B)}{Cos(A)Cos(B) - Sen(A)Sen(B)}$$

O lo que es lo mismo que:

$$Tan(A+B) = \frac{Tan(A) + Tan(B)}{1 - Tan(A) Tan(B)}$$

FORMULAS DEL DOBLE DEL ANGULO

Si $A = B = \phi$ tomando como punto de partida las ecuaciones (1) y (2), se tiene:

$$Sen(2 \phi) = 2 Sen(\phi) Cos(\phi)$$
$$Cos(2 \phi) = Cos^{2}(\phi) - Sen^{2}(\phi)$$

FORMULAS DE LA MITAD DEL ANGULO. (Un limite útil)

Haciendo $A = B = \phi$ en la ecuación (2), se tiene:

$$Cos(2\phi) = Cos^{2}(\phi) - Sen^{2}(\phi) = Cos^{2}\phi - (1 - Cos^{2}(\phi)) = 2 Cos^{2}(\phi) - 1$$

Despejando $Cos^2(\phi)$ se tiene:

(3)
$$Cos^{2}\left(\phi\right) = \frac{1 + Cos\left(2\phi\right)}{2}$$

De igual manera, trabajando para $Sen^2(\phi)$ se puede obtener la siguiente ecuación:

$$Cos(2\phi) = Cos^{2}(\phi) - Sen^{2}(\phi) = (1 - Sen^{2}(\phi)) - Sen^{2}(\phi) = 1 - 2 Sen^{2}(\phi)$$

Despejando $Sen^2(\phi)$ se tiene:

(4)
$$Sen^2(\phi) = \frac{1 - Cos(2\phi)}{2}$$

Analizando las condiciones del signo para la ecuación (3), se tiene:

$$Cos(\phi) = \sqrt{\frac{1 + Cos(2\phi)}{2}}$$
 cuando $Cos(\phi) > 0$

Para cuando el ángulo se encuentra en primer y cuarto cuadrante, y será negativo cuando:

$$Cos(\phi) = -\sqrt{\frac{1 + Cos(2\phi)}{2}}$$
 cuando $Cos(\phi) < 0$

Lo que quiere decir que el ángulo se encuentra en el segundo o tercer cuadrante.

Lo mismo sucede para la ecuación (4), la cual quedaría como:

$$Sen(\phi) = \pm \sqrt{\frac{1 - Cos(2 \phi)}{2}}$$

Donde el signo dependerá de la posición del ángulo, será positivo para cuando el ángulo se encuentra en primer y segundo cuadrante, de lo contrario será negativo.

Ahora bien, reemplazando el ángulo ϕ por $\phi/2$ en la ecuación anterior se obtienen las siguientes expresiones:

$$Cos\left(\frac{\phi}{2}\right) = \pm \sqrt{\frac{1 + Cos(\phi)}{2}}$$
$$Sen\left(\frac{\phi}{2}\right) = \pm \sqrt{\frac{1 - Cos(\phi)}{2}}$$

Donde nuevamente el signo de la ecuación depende de la posición del ángulo $\phi/2$.

Dividiendo la ecuación (4) por el ángulo ϕ , e invirtiendo la ecuación resultante se obtiene:

$$\frac{1 - Cos(2\phi)}{2\phi} = \frac{Sen^2(\phi)}{\phi}$$

De manera que al aplicar el límite cuando el ángulo tienda a cero de tiene:

$$\lim_{\phi \to 0} \frac{1 - \cos(2\phi)}{2\phi} = \lim_{\phi \to 0} \frac{\operatorname{Sen}^{2}(\phi)}{\phi}$$

$$\lim_{\phi \to 0} \frac{1 - Cos\left(2\,\phi\right)}{2\,\phi} = \lim_{\phi \to 0} \left(\frac{Sen\left(\phi\right)}{\phi}\,Sen\left(\phi\right)\right) = \lim_{\phi \to 0} \left(\frac{Sen\left(\phi\right)}{\phi}\right) \times \lim_{\phi \to 0} \left(Sen\left(\phi\right)\right) = 1 \times 0 = 0$$

Si se reemplaza $h=2\phi$ en la ecuación anterior, se tiene el siguiente resultado:

$$\lim_{h \to 0} \frac{1 - \cos(h)}{h} = 0$$

Que es el resultado del limite propuesto, el cual será utilizado para obtener la formula de la derivada de y = Sen(x).